Expectation or moments of a TVGEV
model.
An TVGEV
object.
An object that can be coerced to the "Date"
class. By default the date in x
is used.
Vector of parameters. By default the vector of the
parameters for the model x
is used.
Not used yet.
Description of the moment. For now only the value
"variance"
is accepted, but a description for the 3-rd and 4-th
order moments should be accepted in the future.
An object with class "bts"
representing a block
time series with its value set to the expectation or the moment of
the GEV distribution.
quantile.TVGEV
to compute quantiles of the time-varying distribution.
example(TVGEV)
#>
#> TVGEV> ## transform a numeric year into a date
#> TVGEV> df <- within(TXMax_Dijon, Date <- as.Date(sprintf("%4d-01-01", Year)))
#>
#> TVGEV> df0 <- subset(df, !is.na(TXMax))
#>
#> TVGEV> ## fit a TVGEV model. Only the location parameter is TV.
#> TVGEV> t1 <- system.time(
#> TVGEV+ res1 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+ design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+ loc = ~ t1 + t1_1970))
#>
#> TVGEV> ## The same using "nloptr" optimisation.
#> TVGEV> t2 <- system.time(
#> TVGEV+ res2 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+ design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+ loc = ~ t1 + t1_1970,
#> TVGEV+ estim = "nloptr",
#> TVGEV+ parTrack = TRUE))
#>
#> TVGEV> ## use extRemes::fevd the required variables need to be added to the data frame
#> TVGEV> ## passed as 'data' argument
#> TVGEV> t0 <- system.time({
#> TVGEV+ df0.evd <- cbind(df0, breaksX(date = df0$Date, breaks = "1970-01-01",
#> TVGEV+ degree = 1));
#> TVGEV+ res0 <- fevd(x = df0.evd$TXMax, data = df0.evd, loc = ~ t1 + t1_1970)
#> TVGEV+ })
#>
#> TVGEV> ## compare estimate and negative log-liks
#> TVGEV> cbind("fevd" = res0$results$par,
#> TVGEV+ "TVGEV_optim" = res1$estimate,
#> TVGEV+ "TVGEV_nloptr" = res2$estimate)
#> fevd TVGEV_optim TVGEV_nloptr
#> mu0 32.06678895 32.06638460 32.06679233
#> mu1 -0.02391857 -0.02392656 -0.02391860
#> mu2 0.07727041 0.07728411 0.07727031
#> scale 1.75585289 1.75541862 1.75585346
#> shape -0.18130928 -0.18112018 -0.18130938
#>
#> TVGEV> cbind("fevd" = res0$results$value,
#> TVGEV+ "VGEV_optim" = res1$negLogLik,
#> TVGEV+ "TVGEV_nloptr" = res2$negLogLik)
#> fevd VGEV_optim TVGEV_nloptr
#> [1,] 177.2014 177.2014 177.2014
#>
#> TVGEV> ## ====================================================================
#> TVGEV> ## use a loop on plausible break years. The fitted models
#> TVGEV> ## are stored within a list
#> TVGEV> ## ====================================================================
#> TVGEV>
#> TVGEV> ## Not run:
#> TVGEV> ##D
#> TVGEV> ##D yearBreaks <- c(1940, 1950, 1955, 1960:2000, 2005, 2010)
#> TVGEV> ##D res <- list()
#> TVGEV> ##D
#> TVGEV> ##D for (ib in seq_along(yearBreaks)) {
#> TVGEV> ##D d <- sprintf("%4d-01-01", yearBreaks[[ib]])
#> TVGEV> ##D floc <- as.formula(sprintf("~ t1 + t1_%4d", yearBreaks[[ib]]))
#> TVGEV> ##D res[[d]] <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV> ##D design = breaksX(date = Date, breaks = d, degree = 1),
#> TVGEV> ##D loc = floc)
#> TVGEV> ##D }
#> TVGEV> ##D
#> TVGEV> ##D ## [continuing...] ]find the model with maximum likelihood, and plot
#> TVGEV> ##D ## something like a profile likelihood for the break date considered
#> TVGEV> ##D ## as a new parameter. However, the model is not differentiable w.r.t.
#> TVGEV> ##D ## the break!
#> TVGEV> ##D
#> TVGEV> ##D ll <- sapply(res, logLik)
#> TVGEV> ##D plot(yearBreaks, ll, type = "o", pch = 21, col = "orangered",
#> TVGEV> ##D lwd = 2, bg = "gold", xlab = "break", ylab = "log-lik")
#> TVGEV> ##D grid()
#> TVGEV> ##D iMax <- which.max(ll)
#> TVGEV> ##D abline(v = yearBreaks[iMax])
#> TVGEV> ##D abline(h = ll[iMax] - c(0, qchisq(0.95, df = 1) /2),
#> TVGEV> ##D col = "SpringGreen3", lwd = 2)
#> TVGEV> ##D
#> TVGEV> ## End(Not run)
#> TVGEV>
#> TVGEV>
#> TVGEV>
autoplot(mean(res1))