Check the 'predictUncond' function.

check_predictUncond(
  object,
  newdateFrom = "2020-01-01",
  nsim = 5000,
  plot = TRUE,
  trace = 0,
  ...
)

Arguments

object

An object with class "TVGEV"

newdateFrom

Argument passed to predictUncond.

nsim

Number os simulations to use in in the check.

plot

Logical. If TRUE, some simulated paths will be shown.

trace

Integer level of verbosity.

...

Other arguments to be passed to predictUncond.

Value

A vector of average number of exceedances corresponding to each of the periods which have been predicted. The elemnts of this vector should be close to one, see Details.

Details

The unconditional prediction is computed from the object given using predictUncond this leads to a table, say pu. Then nsim paths are simulated from the model; The simulation is for the period of time begining at newdateFrom and having the length suitable to cover all the predicted periods found in pu. For each row of the prediction table pu -by default, corresponding to a period 5, 10, 20, ...- we count the number of exceedances over the quantile given in the 'Quant' column, for each sample. By definition of the Non-Stationary Return Level, the random number of exceedances has an expectation of one. The function returns the average numbers of exceedances over the nsim paths which therefore should be close to one at least if nsim is large.

See also

Examples

example(TVGEV)
#> 
#> TVGEV> ## transform a numeric year into a date
#> TVGEV> df <- within(TXMax_Dijon, Date <- as.Date(sprintf("%4d-01-01", Year)))
#> 
#> TVGEV> df0 <- subset(df, !is.na(TXMax))
#> 
#> TVGEV> ## fit a TVGEV model. Only the location parameter is TV.
#> TVGEV> t1 <- system.time(
#> TVGEV+     res1 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+                   design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+                   loc = ~ t1 + t1_1970))
#> 
#> TVGEV> ## The same using "nloptr" optimisation.
#> TVGEV> t2 <- system.time(
#> TVGEV+     res2 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+                   design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+                   loc = ~ t1 + t1_1970,
#> TVGEV+                   estim = "nloptr",
#> TVGEV+                   parTrack = TRUE))
#> 
#> TVGEV> ## use extRemes::fevd the required variables need to be added to the data frame
#> TVGEV> ## passed as 'data' argument
#> TVGEV> t0 <- system.time({
#> TVGEV+    df0.evd <- cbind(df0, breaksX(date = df0$Date, breaks = "1970-01-01",
#> TVGEV+                     degree = 1));
#> TVGEV+    res0 <- fevd(x = df0.evd$TXMax, data = df0.evd, loc = ~ t1 + t1_1970)
#> TVGEV+  })
#> 
#> TVGEV> ## compare estimate and negative log-liks
#> TVGEV> cbind("fevd" = res0$results$par,
#> TVGEV+       "TVGEV_optim" = res1$estimate,
#> TVGEV+       "TVGEV_nloptr" = res2$estimate)
#>              fevd TVGEV_optim TVGEV_nloptr
#> mu0   32.06678895 32.06638460  32.06679233
#> mu1   -0.02391857 -0.02392656  -0.02391860
#> mu2    0.07727041  0.07728411   0.07727031
#> scale  1.75585289  1.75541862   1.75585346
#> shape -0.18130928 -0.18112018  -0.18130938
#> 
#> TVGEV> cbind("fevd" = res0$results$value,
#> TVGEV+       "VGEV_optim" = res1$negLogLik,
#> TVGEV+       "TVGEV_nloptr" = res2$negLogLik)
#>          fevd VGEV_optim TVGEV_nloptr
#> [1,] 177.2014   177.2014     177.2014
#> 
#> TVGEV> ## ====================================================================
#> TVGEV> ## use a loop on plausible break years. The fitted models
#> TVGEV> ## are stored within a list
#> TVGEV> ## ====================================================================
#> TVGEV> 
#> TVGEV> ## Not run: 
#> TVGEV> ##D 
#> TVGEV> ##D     yearBreaks <- c(1940, 1950, 1955, 1960:2000, 2005, 2010)
#> TVGEV> ##D     res <- list()
#> TVGEV> ##D 
#> TVGEV> ##D     for (ib in seq_along(yearBreaks)) {
#> TVGEV> ##D         d <- sprintf("%4d-01-01", yearBreaks[[ib]])
#> TVGEV> ##D         floc <- as.formula(sprintf("~ t1 + t1_%4d", yearBreaks[[ib]]))
#> TVGEV> ##D         res[[d]] <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV> ##D         design = breaksX(date = Date, breaks = d, degree = 1),
#> TVGEV> ##D         loc = floc)
#> TVGEV> ##D     }
#> TVGEV> ##D 
#> TVGEV> ##D     ## [continuing...] ]find the model with maximum likelihood, and plot
#> TVGEV> ##D     ## something like a profile likelihood for the break date considered
#> TVGEV> ##D     ## as a new parameter. However, the model is not differentiable w.r.t.
#> TVGEV> ##D     ## the break! 
#> TVGEV> ##D 
#> TVGEV> ##D     ll <- sapply(res, logLik)
#> TVGEV> ##D     plot(yearBreaks, ll, type = "o", pch = 21, col = "orangered",
#> TVGEV> ##D          lwd = 2, bg = "gold", xlab = "break", ylab = "log-lik")
#> TVGEV> ##D     grid()
#> TVGEV> ##D     iMax <- which.max(ll)
#> TVGEV> ##D     abline(v = yearBreaks[iMax])
#> TVGEV> ##D     abline(h = ll[iMax] - c(0, qchisq(0.95, df = 1) /2),
#> TVGEV> ##D            col = "SpringGreen3", lwd = 2)
#> TVGEV> ##D 
#> TVGEV> ## End(Not run)
#> TVGEV> 
#> TVGEV> 
#> TVGEV> 
set.seed(1357)
check_predictUncond(res2)
#>         5        10        20        30        40        50        70       100 
#> 0.9776667 0.9741667 1.0125000 0.9968333 0.9888333 1.0090000 1.0098333 0.9911667 
check_predictUncond(res2, newdateFrom = "1900-01-01", period = 200)
#>      200 
#> 1.013667