Produce a ggplot2 plot of the results of predict for a TVGEV object.

# S3 method for predict.TVGEV
autoplot(object, bw = TRUE, ...)

Arguments

object

An object with class "predict.TVGEV" as returned by the predict method. This must be a data frame so the predict method must be called without using out or setting it to the default value "data.frame".

bw

Logical. Should the plot render in black and white for printing?

...

Not used yet.

Value

An object with class "gg". Can be used with the method plot, or equivalently with print.

Note

This function is intended to work with predictions computed for a possibly large number of periods (to get smooth curves) but with only a small number of dates, each appearing in a facet. So the number of dates is limited to 6. Similarily, the number of confidence levels can not be > 3.

Examples

example(TVGEV)
#> 
#> TVGEV> ## transform a numeric year into a date
#> TVGEV> df <- within(TXMax_Dijon, Date <- as.Date(sprintf("%4d-01-01", Year)))
#> 
#> TVGEV> df0 <- subset(df, !is.na(TXMax))
#> 
#> TVGEV> ## fit a TVGEV model. Only the location parameter is TV.
#> TVGEV> t1 <- system.time(
#> TVGEV+     res1 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+                   design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+                   loc = ~ t1 + t1_1970))
#> 
#> TVGEV> ## The same using "nloptr" optimisation.
#> TVGEV> t2 <- system.time(
#> TVGEV+     res2 <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV+                   design = breaksX(date = Date, breaks = "1970-01-01", degree = 1),
#> TVGEV+                   loc = ~ t1 + t1_1970,
#> TVGEV+                   estim = "nloptr",
#> TVGEV+                   parTrack = TRUE))
#> 
#> TVGEV> ## use extRemes::fevd the required variables need to be added to the data frame
#> TVGEV> ## passed as 'data' argument
#> TVGEV> t0 <- system.time({
#> TVGEV+    df0.evd <- cbind(df0, breaksX(date = df0$Date, breaks = "1970-01-01",
#> TVGEV+                     degree = 1));
#> TVGEV+    res0 <- fevd(x = df0.evd$TXMax, data = df0.evd, loc = ~ t1 + t1_1970)
#> TVGEV+  })
#> 
#> TVGEV> ## compare estimate and negative log-liks
#> TVGEV> cbind("fevd" = res0$results$par,
#> TVGEV+       "TVGEV_optim" = res1$estimate,
#> TVGEV+       "TVGEV_nloptr" = res2$estimate)
#>              fevd TVGEV_optim TVGEV_nloptr
#> mu0   32.06678895 32.06638460  32.06679233
#> mu1   -0.02391857 -0.02392656  -0.02391860
#> mu2    0.07727041  0.07728411   0.07727031
#> scale  1.75585289  1.75541862   1.75585346
#> shape -0.18130928 -0.18112018  -0.18130938
#> 
#> TVGEV> cbind("fevd" = res0$results$value,
#> TVGEV+       "VGEV_optim" = res1$negLogLik,
#> TVGEV+       "TVGEV_nloptr" = res2$negLogLik)
#>          fevd VGEV_optim TVGEV_nloptr
#> [1,] 177.2014   177.2014     177.2014
#> 
#> TVGEV> ## ====================================================================
#> TVGEV> ## use a loop on plausible break years. The fitted models
#> TVGEV> ## are stored within a list
#> TVGEV> ## ====================================================================
#> TVGEV> 
#> TVGEV> ## Not run: 
#> TVGEV> ##D 
#> TVGEV> ##D     yearBreaks <- c(1940, 1950, 1955, 1960:2000, 2005, 2010)
#> TVGEV> ##D     res <- list()
#> TVGEV> ##D 
#> TVGEV> ##D     for (ib in seq_along(yearBreaks)) {
#> TVGEV> ##D         d <- sprintf("%4d-01-01", yearBreaks[[ib]])
#> TVGEV> ##D         floc <- as.formula(sprintf("~ t1 + t1_%4d", yearBreaks[[ib]]))
#> TVGEV> ##D         res[[d]] <- TVGEV(data = df, response = "TXMax", date = "Date",
#> TVGEV> ##D         design = breaksX(date = Date, breaks = d, degree = 1),
#> TVGEV> ##D         loc = floc)
#> TVGEV> ##D     }
#> TVGEV> ##D 
#> TVGEV> ##D     ## [continuing...] ]find the model with maximum likelihood, and plot
#> TVGEV> ##D     ## something like a profile likelihood for the break date considered
#> TVGEV> ##D     ## as a new parameter. However, the model is not differentiable w.r.t.
#> TVGEV> ##D     ## the break! 
#> TVGEV> ##D 
#> TVGEV> ##D     ll <- sapply(res, logLik)
#> TVGEV> ##D     plot(yearBreaks, ll, type = "o", pch = 21, col = "orangered",
#> TVGEV> ##D          lwd = 2, bg = "gold", xlab = "break", ylab = "log-lik")
#> TVGEV> ##D     grid()
#> TVGEV> ##D     iMax <- which.max(ll)
#> TVGEV> ##D     abline(v = yearBreaks[iMax])
#> TVGEV> ##D     abline(h = ll[iMax] - c(0, qchisq(0.95, df = 1) /2),
#> TVGEV> ##D            col = "SpringGreen3", lwd = 2)
#> TVGEV> ##D 
#> TVGEV> ## End(Not run)
#> TVGEV> 
#> TVGEV> 
#> TVGEV> 
pred <- predict(res2, newdate = c("1960-01-01", "2000-01-01", "2020-01-01"),
                level = c(0.70, 0.95), confintMethod = "delta")
g <- autoplot(pred)