Confidence intervals for the parameters of a poisGP
object.
Arguments
- object
An object with class
"poisGP"
.- parm
Not used yet. Confidence intervals are computed for each of the three parameters.
- level
Confidence level(s).
- type
The type of parameterisation wanted: Poisson-GP or Point-Process.
- method
Character:
"delta"
leads to the simplistic delta method and"proflik"
to the profile-likelihood.- nSigma
Used only when
check
isTRUE
. It defines the interval around the ML estimate where the profile log-likelihood will be evaluated in order to build a curve allowing a check of the results. The value ofnSigma
defines the number of standard deviation for the current parameter that will be used. If needed, an an asymmetric interval can be defined by using two numbers e.g.c(3, 5)
if it is expected that the confidence intervals spread more on the right side of the estimates than they do on the left side.- trace
Integer level of verbosity.
- round
Logical. If
TRUE
the confidence limits will be rounded to a same small number of digits. This number is chosen using the smallest of the standard deviations for the estimated parameters.- out
Character giving the class of the output. By default this is a three-dimensional array with dimensions: parameter, lower/upper limit, and level. If
level
has length1
, usingdrop
on the output will remove the third dimension and produce a matrix. The"data.frame"
gives the same results in "long format".- check
Logical. Used only when
method
is"proflik"
. IfTRUE
the function return results intended to be used in a graphical check of the confidence limits and taking the form of a list of two data frames. The first data frame contains evaluations of the profile-negative log-likelihood for each of the three parameters in order to draw profile-likelihood curves. The second one contains the confidence bounds in "long format".- nCheck
Number of evaluations of the profile log-likelihood if
check
isTRUE
.- ...
Further arguments passed to the
profLik
method for the class ofobject
. The argumentsftol_abs
andftol_rel
can be modified when some problems are met.
Value
When check
is FALSE
, an array or a data
frame containing the lower and upper bounds "L"
and
"U"
of the confidence intervals. When check
is
TRUE
a list of two data frames which is given the class
"confintCheck"
is order to use the autoplot
method
that is implemented for this class.
Details
This method finds confidence intervals for each of the three
parameters of the chosen parameterisation: "poisGP"
(default) or "PP"
. The recommended (and default) method
uses profile-likelihood as implemented in proflik.default
.
The determination of the intervals relies on a new method based on
constrained optimisation: thus the profiled likelihood is not
computed as such, as opposed to what is usually done. The profiled
likelihood can be computed to check the results by using
check = TRUE
, but no zero finding is used to find the
confidence limits following the classical method. The check is
thus entirely based on the graphics which must be carefully
inspected.
Note
Remind that the "PP"
parameterisation does not depend
on the threshold, as opposed to the "poisGP"
parameterisation. So type = "PP"
should be used to
investigate threshold stability for the full parameter
vector. However the confidence intervals on the two shape
parameter: Poisson-GP \(\xi\) and PP \(\xi^\star\) are
(or should be) identical.
Caution
The determination of the profile-likelihood
intervals can fail, so it is wise to set check = TRUE
and
use the autoplot
method on the returned object. Problems
seem to be more frequently met with type = "PP"
, i.e. when
the Point-Process parameterisation is used.
See also
RL.poisGP
for the computation of the return
levels with confidence intervals,
autoplot.confintCheck.poisGP
for the graphical check
of the results. The profLik.default
method is used by this
function.
Examples
## fit from the object Garonne from Renext (class "Rendata")
fit <- poisGP(Garonne, threshold = 2900)
ci <- confint(fit, lev = c(0.70, 0.95), trace = 1)
#>
#> o Perform profile-likelihood for the "poisGP" parameterisation.
#>
#>
#> o Parameter lambda
#> *******************
#>
#>
#> o Upper bound for level 70%
#> Optimisation status: 3
#> Iterations: 86
#> Objective value: 532.9476250
#> Constraint check: -0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Upper bound for level 95%
#> Optimisation status: 3
#> Iterations: 110
#> Objective value: 534.3312574
#> Constraint check: -0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 70%
#> Optimisation status: 3
#> Iterations: 102
#> Objective value: 532.9476250
#> Constraint check: 0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 95%
#> Optimisation status: 3
#> Iterations: 131
#> Objective value: 534.3312574
#> Constraint check: 0.0000000
#> gradDist: 0.0000000
#>
#> o Parameter scale
#> *******************
#>
#>
#> o Upper bound for level 70%
#> Optimisation status: 3
#> Iterations: 590
#> Objective value: 532.9476250
#> Constraint check: 0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Upper bound for level 95%
#> Optimisation status: 3
#> Iterations: 453
#> Objective value: 534.3298829
#> Constraint check: -0.0013745
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 70%
#> Optimisation status: 3
#> Iterations: 433
#> Objective value: 532.9476248
#> Constraint check: -0.0000002
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 95%
#> Optimisation status: 3
#> Iterations: 340
#> Objective value: 534.3274269
#> Constraint check: -0.0038304
#> gradDist: 0.0000000
#>
#> o Parameter shape
#> *******************
#>
#>
#> o Upper bound for level 70%
#> Optimisation status: 3
#> Iterations: 428
#> Objective value: 532.9476250
#> Constraint check: 0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Upper bound for level 95%
#> Optimisation status: 4
#> Iterations: 533
#> Objective value: 534.3312574
#> Constraint check: -0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 70%
#> Optimisation status: 3
#> Iterations: 775
#> Objective value: 532.9476250
#> Constraint check: -0.0000000
#> gradDist: 0.0000000
#>
#>
#> o Lower bound for level 95%
#> Optimisation status: 3
#> Iterations: 1068
#> Objective value: 534.3312573
#> Constraint check: -0.0000000
#> gradDist: 0.0000000
#>
#> o Results for "poisGP"
#>
#> , , 70%
#>
#> L U
#> lambda 1.5660291 1.89628430
#> scale 1126.0956526 1459.97198151
#> shape -0.2403859 -0.08005602
#>
#> , , 95%
#>
#> L U
#> lambda 1.4324021 2.057372e+00
#> scale 992.2339692 1.621010e+03
#> shape -0.2998095 4.504269e-03
#>
## Check the results: this is quite time-consuming.
if (FALSE) {
cic <- confint(fit, lev = c(0.95, 0.70), check = TRUE)
autoplot(cic) + theme_gray() +
ggtitle("Poisson-GP parameterisation")
cicPP <- confint(fit, type = "PP", lev = c(0.95, 0.70), check = TRUE)
autoplot(cicPP) + theme_gray() +
ggtitle("Point-Process (PP) parameterisation")
}