Generalized Residuals for a TVGEV
Model
residuals.pgpTList.Rd
Generalized Residuals for a TVGEV
model.
Arguments
- object
A
TVGEV
object.- type
The approximate distribution wanted. The choices
c("unif", "exp")
correspond to the standard uniform, the standard exponential and the standard Gumbel distributions. Partial matching is allowed.- ...
Not used yet.
Value
A vector of generalized residuals which should
approximately be independent and approximately
follow the standard exponential or the uniform distribution,
depending on the value of type
.
References
Cox, D.R. and Snell E.J. (1968) "A General Definition of Residuals". JRSS Ser. B, 30(2), pp. 248-275.
Examples
if (require("NSGEV")) {
## build thresholds then fit
Rq <- rqTList(dailyMet = Rennes, tau = c(0.94, 0.95, 0.96, 0.97, 0.98, 0.99))
Pgp <- pgpTList(dailyMet = Rennes, thresholds = Rq, declust = TRUE,
extraDesign = list(splines = list("what" = "NSGEV::breaksX",
"args" = list(breaks = "1980-01-01"))),
scale.fun = ~Cst + sinjPhi1 + sinjPhi2 + sinjPhi3 + t1_1980 - 1,
fitLambda = TRUE, logLambda.fun = ~ t1_1980 - 1)
res <- resid(Pgp)
autoplot(res)
autoplot(res, seas = TRUE)
}
#> o Using meteorological variable : "TX"
#> o Adding new variables
#> o Using K = 3 and the following phases
#> sinjPhi1 sinjPhi2 sinjPhi3
#> 105.94 8.53 84.21
#> o evaluation of `NSGEV::breaksX`. Date is added in 1-st arg `date`
#> o Sampling rate : 365.26/year
#> o Looping on 6 thresholds
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 772
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -3528.563
#>
#> Estimated coefficients:
#> b0 b1
#> -3.841 0.017
#> Full coefficients:
#> b0 b1
#> -3.841 0.017
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 671
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -3157.518
#>
#> Estimated coefficients:
#> b0 b1
#> -4.000 0.019
#> Full coefficients:
#> b0 b1
#> -4.000 0.019
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 565
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -2753.763
#>
#> Estimated coefficients:
#> b0 b1
#> -4.186 0.020
#> Full coefficients:
#> b0 b1
#> -4.186 0.020
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 450
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -2292.492
#>
#> Estimated coefficients:
#> b0 b1
#> -4.438 0.021
#> Full coefficients:
#> b0 b1
#> -4.438 0.021
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 323
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -1743.484
#>
#> Estimated coefficients:
#> b0 b1
#> -4.856 0.026
#> Full coefficients:
#> b0 b1
#> -4.856 0.026
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 179
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -1068.854
#>
#> Estimated coefficients:
#> b0 b1
#> -5.492 0.029
#> Full coefficients:
#> b0 b1
#> -5.492 0.029
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>