Compute Quantiles for the Maximum the Marks of a Poisson-GP Model
quantMax.pgpTList.Rd
The Poisson-GP model given in x
only describes the tail of
the distribution of the maximum. So when a probability is too
small the quantile may be NA
.
Usage
# S3 method for pgpTList
quantMax(object, newdata = NULL, prob = NULL, level = 0.95, ...)
Arguments
- object
An object with class
"predict.pgpTList"
as created by applying thepredict
method on an object with class"pgpTList"
.- newdata
A "new" data frame or
Date
vector used to define the "new" period. The quantiles will be the those of the random maximum \(M\) of the marks on this period.- prob
Vector of probabilities.
- level
The confidence level.
- ...
Not used yet.
Details
The computation of the quantiles without any inference result can
be performed at a lower cost by using the results of a
predict
step it these have already been computed. Of course
the "new" period will be that which was used in the predict
step and can not be changed.
Examples
RqU <- rqTList(dailyMet = Rennes, tau = c(0.94, 0.95, 0.96, 0.97, 0.98, 0.99))
Pgp1 <- pgpTList(dailyMet = Rennes, thresholds = RqU, declust = TRUE,
fitLambda = TRUE, logLambda.fun = ~YearNum - 1)
#> o Using meteorological variable : "TX"
#> o Adding new variables
#> o Using K = 3 and the following phases
#> sinjPhi1 sinjPhi2 sinjPhi3
#> 105.94 8.53 84.21
#> o Sampling rate : 365.26/year
#> o Looping on 6 thresholds
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 772
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -3537.078
#>
#> Estimated coefficients:
#> b0 b1
#> -3.757 0.009
#> Full coefficients:
#> b0 b1
#> -3.757 0.009
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 671
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -3165.859
#>
#> Estimated coefficients:
#> b0 b1
#> -3.912 0.010
#> Full coefficients:
#> b0 b1
#> -3.912 0.010
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 565
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -2762.467
#>
#> Estimated coefficients:
#> b0 b1
#> -4.087 0.010
#> Full coefficients:
#> b0 b1
#> -4.087 0.010
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 450
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -2299.813
#>
#> Estimated coefficients:
#> b0 b1
#> -4.337 0.012
#> Full coefficients:
#> b0 b1
#> -4.337 0.012
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 323
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -1749.224
#>
#> Estimated coefficients:
#> b0 b1
#> -4.754 0.016
#> Full coefficients:
#> b0 b1
#> -4.754 0.016
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
#>
#> o Fit the temporal Poisson process: non-homogeneous
#>
#> Number of observations not used in the estimation process: 0
#> Total number of time observations: 28366
#> Number of events: 179
#>
#> Convergence code: 0
#> Convergence attained
#> Loglikelihood: -1072.212
#>
#> Estimated coefficients:
#> b0 b1
#> -5.389 0.018
#> Full coefficients:
#> b0 b1
#> -5.389 0.018
#> attr(,"TypeCoeff")
#> [1] "Fixed: No fixed parameters"
#>
Date <- seq(from = as.Date("2020-01-01"), to = as.Date("2050-01-01"), by = "day")
## compute the quantile for the maximum on the "new" period
qMax <- quantMax(Pgp1, newdata = Date)
autoplot(qMax)