Translate a vector of coefficients from a Renewal-POT model with exponential excesses to a vector of Gumbel parameters
Ren2gumbel.Rd
Translate a vector of coefficients from a Renewal-POT model with exponential excesses to a vector of Gumbel parameters.
Arguments
- object
-
A named vector of parameters or an object of class
"Renouv"
. In the first case, the names of the vector element must conform to the exponential distribution so the vector must be of length 2 with names"lambda"
and"rate"
. - threshold
-
A threshold associated with the parameters. If
object
is an object with class"Renouv"
, its threshold slot will be used. - w
-
A block duration or a vector of block durations.
- distname.y
-
The name of the distribution for the excesses. Can be either
"exponential"
or"exp"
. The choice has no impact on the computations, but this name will be attached to the result as an attribute and may affect later use. - jacobian
-
Logical. If
TRUE
the jacobian matrix of the transformation will be computed and attached to the result as an attribute. - vcovRen
-
A covariance matrix for the Renouv parameters.
Value
A vector of GEV parameters if w
has length 1, and a matrix if
w
has length > 1
. The returned objects has attributes.
See also
Ren2gev
for the translation of Renouv parameters
corresponding to GPD excesses.
Examples
## Fit a Renouv model with exponential excesses (default)
fit <- Renouv(Garonne)
## Convert to gumbel (usable for one-year block maxima)
parGumbel <- Ren2gumbel(fit)
## Retrieve the 'Renouv' model by giving the right threshold
parRen <- gumbel2Ren(parGumbel,
threshold = 2500,
vcovGumbel = attr(parGumbel, "vcov"),
plot = TRUE)
#> loc scale
#> loc 8719.318 2564.989
#> scale 2564.989 4116.247
#> loc scale
#> lambda 0.002173328 -1.849022e-03
#> threshold 1.000000000 0.000000e+00
#> rate 0.000000000 -8.615349e-07
#> lambda rate
#> lambda 3.464240e-02 1.754489e-06
#> rate 1.754489e-06 3.055253e-09
## Build a compatible model under the assumption of one event by
## year
parRen2 <- gumbel2Ren(parGumbel,
lambda = 1.00,
vcovGumbel = attr(parGumbel, "vcov"),
plot = TRUE)
#> loc scale
#> loc 8719.318 2564.989
#> scale 2564.989 4116.247
#> loc scale
#> lambda 0 0.000000e+00
#> threshold 1 0.000000e+00
#> rate 0 -8.615349e-07
#> lambda rate
#> lambda 0 0.000000e+00
#> rate 0 3.055253e-09
parRenNames <- c("lambda", "rate")
## Build a 'Renouv' object without estimation
myVcov <- attr(parRen, "vcov")[parRenNames, parRenNames]
fitNew <- RenouvNoEst(threshold = attr(parRen, "threshold"),
estimate = parRen,
distname.y = "exp",
cov = myVcov)
#> Warning: warning: distribution not in target list. Still EXPERIMENTAL
## Compare return levels
cbind(roundPred(fit$pred)[ , -2], roundPred(fitNew$pred)[ , -2])
#> period L.95 U.95 L.70 U.70 period L.95 U.95 L.70 U.70
#> 30 10 5494 6300 5684 6110 10 5501 6293 5688 6107
#> 33 20 6160 7128 6388 6900 20 6161 7127 6389 6900
#> 36 50 7038 8224 7318 7945 50 7033 8230 7315 7948
#> 38 100 7701 9055 8020 8736 100 7693 9063 8016 8740
#> 41 200 8363 9887 8722 9528 200 8352 9897 8716 9533
#> 43 300 8750 10373 9132 9991 300 8738 10385 9126 9997
#> 44 400 9024 10719 9424 10320 400 9012 10731 9417 10326
#> 46 500 9237 10987 9649 10575 500 9225 11000 9643 10581
#> 47 600 9411 11206 9834 10783 600 9398 11219 9827 10790
#> 48 700 9558 11391 9990 10959 700 9545 11404 9983 10966
#> 49 800 9686 11551 10125 11112 800 9672 11565 10118 11119
#> 51 900 9798 11693 10244 11246 900 9784 11707 10237 11254
#> 52 1000 9898 11819 10351 11367 1000 9884 11833 10343 11374
## idem for the putative 'Renouv' with rate 1
myVcov2 <- attr(parRen2, "vcov")[parRenNames, parRenNames]
fitNew2 <- RenouvNoEst(threshold = attr(parRen2, "threshold"),
estimate = parRen2,
distname.y = "exp",
cov = myVcov2)
#> Warning: warning: distribution not in target list. Still EXPERIMENTAL
cbind(roundPred(fit$pred)[ , -2], roundPred(fitNew2$pred)[ , -2])
#> period L.95 U.95 L.70 U.70 period L.95 U.95 L.70 U.70
#> 30 10 5494 6300 5684 6110 10 5608 6187 5744 6050
#> 33 20 6160 7128 6388 6900 20 6268 7020 6445 6843
#> 36 50 7038 8224 7318 7945 50 7140 8123 7371 7891
#> 38 100 7701 9055 8020 8736 100 7800 8957 8072 8684
#> 41 200 8363 9887 8722 9528 200 8459 9790 8773 9477
#> 43 300 8750 10373 9132 9991 300 8845 10278 9183 9941
#> 44 400 9024 10719 9424 10320 400 9119 10624 9474 10270
#> 46 500 9237 10987 9649 10575 500 9331 10893 9699 10525
#> 47 600 9411 11206 9834 10783 600 9505 11112 9884 10733
#> 48 700 9558 11391 9990 10959 700 9652 11297 10039 10910
#> 49 800 9686 11551 10125 11112 800 9779 11458 10174 11062
#> 51 900 9798 11693 10244 11246 900 9891 11600 10293 11197
#> 52 1000 9898 11819 10351 11367 1000 9991 11726 10400 11318